
AD-AISO 802 AIR FORCE INST OF TECH WRIGHT-PATTERSON AF8 OH SCHOO--ETC F/G 20/9
RESONANCE ABSORPTION OF LASER LIGHT BY WARM AND COLD LASMAS. (U)

MAR 81 J H RUBLE

UNCLASSIFIED AFIT/GENE/PH/81-9

i EhE~hEEEEh7EEEEh
mEEEmhEEEEEEE



4 AFIT/GNE/PH/8l-9

Accession For
NTIS 'GRA&I

DTIC TAB
Unannounced [
Ju3tiicatjor-

-D i 1but o,,/

Av l nh;i 1

Dist

RESONANCE ABSORPTION OF LASEjI LIGHT
V b g

BY WARM ANDILOLD PLASMAS.,

/ / THESIS

A.IT/GNE/PH/81-9 John H.)Ruble, Jr
-7' 2nd Lt jA

Ad-,



AFIT/GNE/PH/81-9

RESONANCE ABSORPTION OF LASER LIGHT

BY WARM AND COLD PLASMAS

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

by

John H. Ruble, Jr., B.S.N.E.

2nd Lt USAF

Graduate Nuclear Engineering

January 1981

Approved for public release; distribution unlimited.



Acknowledgments

This work was undertaken to learn about laser-fusion

in general and resonance absorption in particular. In

written form, it is devoted to the latter. I would like

to thank Major John Erkkila for his patience and guidance.

Without his help I would not have accomplished what I did.

He also deserves credit for developing the two-sweep method

employed to solve the wave-equations in the plasma. I

would also like to thank the Physics Department here at

AFIT for giving me the chance to do this research. Last,

but not least, my thanks goes to my family for tolerating

the long hours required of me here.

John H. Ruble, Jr.

I

ii

'F



_T~

Contents

Page

Acknowledgments. ............................iiI

List of Figures ....................... v

List of Symbols ..................... Vii

Ab~stract .................................... ix

I. introduction .............................. 1

II. Linear modeling...................5

Linearizing the Equations ............. 5
TE Mode Solution. .....................7

TM Mode Solution. .................... 8
Consequences of the Density Profile . . . 9
cold Plasma. ..................... 9

Second-order Equations ............... 10
Landau Damping ......................12

III. Numerical Methods....................17

Gridding...........................17
Differencing the Equations ............. 19
Application of Boundary Conditions. ........ 20

Zero Boundary Condition. ........... 20
Radiation Boundary Condition .......... 21

IV. Results ........................ 23

Parameters.o....................24
Ex andBy...............................24
Ez (Longitudinal Electric Field):............2

cold Plasma ................... 25
Warm Plasma ................... 25

S. ~Spatial Dispersion................27
The Plasma Wave.................29

Cold Plasma .......................29
Warm Plasmao......................30

Absorption. ..........................32
Cold Plasma ......................34
Warm Plasma .................... 34

Ponderomotive Force................38
Hot Electron Energy................40
Validity bf Assumptions..............41

V. Conclusions ..................... 44



Contents (Continued)

Page

Bibliography............... .......... 47

Appendix A: Derivations................49

Linearized Equations from Fundamental Equa-
tions TE Mode...................49
E" TEMode.....................51
Linearized Warm Plasma Equations from Funda-
mental Equations TM mode .. ............. 52
Cold Plasma: E" from Linearized Equations . 54
Warm Plasma: N and E" from Linearized
Equations.....................55
Warm Plasma: B" and E" from Linearized
Equations.....................56
Cold Plasma: Differenced Equations Solved for
the Constants in the Plasma ........... 58
Warm Plasma: Difference Equations Solved for
the Constants in the Plasma ........... 60
kz from E'. .. .................... 64
Ponderomoti ve Force (F L

NL.........................65

Appendix B: Cold Plasma Data Curves .......... 68

Appendix C: Warm Plasma Data Curves .......... 90

( iv



List of Figures

Figure Page

1 Density n0 as a Function of z in the
Case of Linear Density Gradient . . . . 1

2 Geometry for the Incident Electro-
magnetic Wave, TM Mode . ........ 2

3 Geometry for the Incident Electro-
magnetic Wave, TE Mode .... ........ 3

4 Landau Damping (VL/w = - im(w/wp) as
a Function of Location in the
Plasma ............... ........ 16

5 Power at Which Spatial Dispersion
Becomes Important (27Vos/w = Az) as a
Function of Background Electron Tem-
perature: Curve 1; Cold Plasma
T = (24.7w/v)2/3 , Curve 2; Warm
Plasma VL/w = .1. . ...... .... 28

6 Regions of Validity (Indicated by
Arrows) for the Warm and Cold Plasma
Models ..... ................ 31

7 Cold Plasma: Fraction of Laser Energy
Resonantly Absorbed as a Function of
Incident Angle .. ............ 35

8 Warm Plasma: Fraction of Laser Energy
Resonantly Absorbed as a Function of
Incident Angle (T = 637 ev and
VL/w = .) . .. .............. 36

9 Ponderomotive Force for the Warm
Plasma, VL/w .1 (Curve 1), and the
Cold Plasma (Curve 2), for a Laser

Flux of 1013 W/cm 2 ) and the Thermal
Force Vn0 kT of the Plasma (Curve 3) . 39

B-l.- B-7 Data for v/w = .002 ... .......... . 69-75

B-8 - B-14 Data for v/w = .008 ... .......... . 76-82

B-15 - B-21 DatA for v/w = .02 .. .......... . 83-89

2
°C-1 C-7 Data for vL/w = .1 and T/mc2 =0005 .92-98

C-8 - C-14 Data for VL/w = .09 and T/mc .00125. 99-105

v



List of Figures (Continued)

Figure Page

C-15 - C-21 Data for vL/w= .1 and T/Inc 2= .005 . . 106-112

C-22 - C-28 Data for v L/w =.1 and T/mc .=05 . . 113-119

C-29 - C-35 Data for V L/w = .67 and T/Inc 2 .00125. 120-126

2
C-36 - C-42 Data for v L/w = .67 and T/nic ..005 . 127-133

2
C-43 - C-49 Data for v L/w = .67 and T/mc ..01 . . 134-140

2
C-50 - C-56 Data for V L/w =.67 and T/mc ..1 . . 141-147

vi



I List of Symbols

B Magnetic field

B.in Incident magnetic field

B scScattered or reflected magnetic field

E.in Incident electric field

E scScattered or reflected electric field

Esclcrcfedvetri -ieto

E zElectric field vector in x-direction

F NL Ponderomotive force

k Free-space wave number

k zWave-vector of longitudinal waves

L Plasma critical length

m mass of electron

Nc n c  Nianber density of electrons initially at the
critical surface

N0,n 0  Initial electron number density

Nl~nI1 Number density of hot electrons

s Sine of incident angle

T Electron temperature in ev

T , H  Temperature of hot electrons (2F mV s)

so

y Ratio of specific heats (3 for this one-dimensional
problem)

E Dielectric constant in the plasma

8 Incident angle

Free-space wavelength

D Debye length

vii



X Wavelength of longitudinal waves

vElectron-ion collision frequency (inverse
bremsstrahlung)

c Electron-ion collision frequency at the critical
surface

VL Landau damping frequency (also L.D.C.xw)

Ratio of adjacent mesh space sizes

WFrequency rad/sec of incident light

p P Electron plasma frequency

viii



Abstract

This is a study of the mechanisms and results of reso-

nance absorption in warm and cold plasmas. Maxwell's equa-

tions and the plasma fluid equations (neglecting ion motion

and assuming wavelike solutions in the x-direction) are

linearized. The linearization is accomplished for a plasma

with a positive number density gradient in the z-direction.

Second-order equations are derived from the linearized set.

These second-order equations are differenced and solved in

the z-direction for the TM mode of propagation using a two-

sweep algorithm with zero and radiation boundary conditions.

The characteristics of the field quantities are investigated

at various temperatures. Further, N1 (the plasma wave),

the temperature of the hot electrons, and the nonlinear

Ponderomotive force are calculated. Finally, resonance

absorption by the plasma is calculated and peak absorptions

of 50% are observed for both cold and low temperature warm

plasmas. The validity of the assumptions is discussed

referencing both power and temperature concerns. Possible

nonlinear and time-dependent modifications to the theory

are discussed. Landau damping is derived and its limita-

tions considered. The two-sweep algorithm is found to give

accurate results and its amenability to computer application

makes it a desirable method.

ix



I Introduction

In this thesis the propagation and absorpton of EM

waves in cold and warm inhomogeneous plasmas are studied.

It will be useful to start with a physical description of

the fundamental concepts.

An electromagnetic wave can freely propagate in

homogeneous plasma in which the natural frequency of the

2 1/2plasma, wu = (4irne /m) , is less than the frequency of

the wave, w. Here n is the density of the electrons in the

plasma, e their charge, and m their mass. When the fre-

quency of the wave is less than the plasma frequency, the

wave does not propagate but decays exponentially in the

plasma. This exponentially decaying wave is called an

evanescent wave.

An interesting problem occurs in an inhomogeneous

plasma, then, when an electromagnetic wave is made to prop-

agate from an underdense region (w > w p) to an overdense
pL

Wp)region (w < w .It is the interaction of the EM wave with

n n c

0

.- Fig 1. Density n3 as a Function of z in the Case of
Linear Densitv Gradient

1i



Vn,

Fig 2. Geometry for the Incident Electromagnetic Wave,
TM Mode

the plasma in this situation that is the subject of inves-

tigation in this thesis.

Consider an EM wave normally incident on a plasma in

which n is increasing with z and independent of x and y as

shown in Figure 1. For a wave propagating in the z-direction,

reflection occurs at the plane in the plasma where w = wP

This plane is called the critical surface. For the normally

incident wave, the critical surface is analogous to the

classical turning point (reflection roint) where cos2e 2 = 2iW2/

The mechanism by which energy is lost by the electromagnetic

wave is collisional damping. This loss is insignificant

when the plasma temperature is above 600 ev.

Significant losses can occur, however, when the EM

wave is obliquely incident (at an angle e with respect to

the normal). This situation is shown in Figure 2 for light

prcdagating in the Tfl mode. In this mode of propagation,

the EM wave has a component of its electric field pointed

along the plasma density ;radient. For this reason, the EM

2
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Fig 3. Geometry for the Incident Electromagnetic Wave,
TE Mode

wave interacts strongly with the plasma at the critical sur-

face. This interaction leads to an energy loss from the EM

wave that is called resonance absorption. A model of this

process is the specific objective of the following work.

Figure 3 depicts the alternative obliquely incident EM

wave, which is propagating in the TE mode, and is not reso-

nantly absorbed because no component of its electric field

lies along the density gradient. As will be shown, this

wave is reflected with no absorption at the classical turn-

ing point which is on the underdense side of the critical

surface. The TM mode also undergoes reflection at this

plane; however, the z-component of the electric field

becomes an evanescent wave which "tunnels" into the critical

surface. Here, the EM wave becomes very large and excites

an electron plasma wave. The enhanced EM wave loses energy

through collisions and the plasma wave is damped without

collisions by interaction with electrons having a thermal

velocity equal to its phase velocity. These losses are the

3
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source of resonance absorption. The results of this study

that demonstrate these ideas are included in Chapter IV

along with additional process descriptions. The absorption

of the EM energy by the electrons at the critical surface

and the subsequent transfer of this energy into the random

thermal motion (temperature) of other electrons will also be

developed and discussed in Chapter IV.

The linear variation of density of a plasma models the

plasma surrounding a laser fusion target which has been

slightly heated to create a thin enclosing plasma. The

electromagnetic wave considered is then the laser beam used

to heat the plasma. Resonance absorption is expected to

contribute significantly to the heating of the pellet

because collisional losses are quite ineffective as the

plasma (target) temperature increases.

The aim here is to develop a simple model of the

absorption mechanisms and effects using a minimum of com-

puter space and time. The effort will be described as

follows. In Chapter II the equations to be solved which

describe resonance absorption in a linear plasma are derived,

as is the term that determines the damping of the plasma

waves (Landau damping). In Chapter III the numerical meth-

ods for solving these equations are discussed, and the

results are presented in Chapter IV. CGS (Gaussian) units

will be used thrpughout this paper to enable comparison to

related research.

4



II Linear Modeling

Two types of plasmas were analyzed. First, a cold

electron plasma with no electron pressure and then a plasma

of warm electrons with a pressure gradient. In each case,

the ions were assumed to be immobile and an electron-ion

collision probability was included. The plasma densi.ty

gradient necessary for resonance absorption was chosen as

a linear ramp in the z-direction. The linear analysis was

achieved by using Maxwell's equations and the plasma fluid

equation for electron momentum. This chapter will outline

the equations used and assumptions made in order to obtain

the wave equations solved in the plasma. Complicated

derivations of equations included in this work are contained

in Appendix A.

Linearizing the Equations

Maxwell's equations and the continuity and momentum

equations for electrons are (in Gaussian units):

dn + V nV = 0
dt

dv
mn( + vV +V VV) + Vp enE

VxE 1 dB-- a -
VxB = 4 +1 dE

c c dt

V E = 47en

S•B = 0

. . "~ 5 '



further

j = neV
(2.1)

P = yTn

where

v is the electron-ion (inverse bremsstrahlung) collis-

ion frequency

n is the electron number density

V is the electron velocity

m is the electron mass

y is the ratio of specific heats (3 in this one-dimen-
sional problem)

T is electron temperature in ev

j is electron current

B is magnetic field intensity

E is electric field intensity

e is electron charge

P is electron pressure

Linearizing approximations were made assuming wavelike

solutions as follows:

n n-iwt + iksxn 0  1 l

-iwt + iksx
-1 (2.2)

iwt + iksx
E = 0 + E1et

-iwt + iksx
B B + Bi e

- 0 -1

where

s is the sine of the incident angle 6

6



Hence, steady-state solutions were the object of the inves-

tigation and oscillations around equilibrium values the

result.

TE Mode Solution

The transverse electric mode does not exhibit resonance

absorption because its electric field is perpendicular to

the plasma density gradient. This can be seen by examining

the wave equation for E . To do this, the above quantities

(Eqs 2.2) were substituted into Eqs (2.1) and resulted in

the following set of equations for the TE mode.

' =ikBEy x

sE =B

y z

iksE +E = 4nne
y y 1 (2.3)

-iksB z + B' = -ikEEx y

annl -an 1  = 0

iks(n 0 - nI) = 0

where

a cm( + iv . L)

denotes differentiation with respect to z

and

W1 - /2 (1 + iv/W) (2.4)
p

Also, w is the local plasma frequency which is given by:

2 4rn 0e
2

p m

7



From these equations was derived the fact that N1 = 0, and

that the second-order equation for E is:

E" + k2(C - S2)Ey = 0 (2.5)
y

Thus, there is no plasma wave generated and no resonance

absorption occurs in the TE mode. This fact and Eq (2.5)

are presented in Reference 1.

TM Mode Solution

A resonance is expected for the TM case where the

electric field has a component parallel to the plasma

density gradient. This, too, can be gleaned from an exami-

nation of the second-order equations derived from Eqs (2.1).

First, the equations were solved for the TM mode with a

plasma number density gradient again in the z-direction

and an electron temperature. The resulting four equations

model linear resonance absorption phenomena and formed the

basis for this work.

ikB = E' - iksEz

-ikcE x = aiksn1 - B'

(2.6)
-ikEE z + ann1  iksB

iksE+ EI 4en

where 6 = n and all other variables have been previously

defined.

8



Consequences of the Density Profile. As mentioned

earlier, the plasma density variation was chosen as a linear

ramp profile. The number density increased from virtually

zero at the front face to 1.12 x 10 19cm - 3 two free-space

wavelengths into the plasma. At that point, the plasma

frequency (w p)equaled the frequency of the incident .001 cm

(10 pm) light. This is the point at which resonance (for-

mation of plasma waves) occurs and is called the critical

surface. The linear variation in number density made it

possible to write:

n nc (z/L) (2.7)

= i/z

(2.8)

= 1 - z/(L + iZVc/W)

where

nc is the value of n at the critical surface

Vc is the value of the electron-ion collision frequency
at the critical surface

L is the distance to the critical surface

z is the position in the plasma (measured from the
front face)

Cold Plasma. For the cold plasma case, the terms

involving T in Eqs (2.6) are set to zero. This is the same

as ignoring the term "7P" in the momentum equation and

results in the following equations:

99



ikB = E' - iksEz

ikE = B'x (2.9)

-ikCE = iksB

iksE + E' = 4nenx z1

where all the terms have been previously defined.

It is inconsistent to allow the electrons to have no

temperature and assume a finite collision frequency since

the two are related by (Ref 2:30, Eq 3.4):

v/w = 24.7 nc/n0 (T
3 /2 ; T in ev (2.10)

However, the v/w damping must be included in the equations

to avoid an infinite resonance condition at the critical

surface. Later, v/w and Eq (2.10) will be used to obtain

an effective temperature. Unless otherwise stated, v/w

was chosen small enough so that only resonance absorption

was observed.

Second-Order Equations

The purpose of the preceding derivations was to obtain

linearized equations which could be easily converted into

wave equations for the quantities of interest. The alge-

braic manipulations resulting in these equations are

included in Appendix A and here, only the second-order equa-

tions will be presented.

Only one second-order equation was necessary for the

cold plasma. It was written in terms of E and took the~z

form (Ref 1:572, Eq 3.1):

10
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E" + k2 ( - s 2)E + [E (knc)']' = 0 (2.11)
z z

For the warm plasma, it was necessary to write two

coupled second-order equations. Two sets of these were

derived from Eqs (2.6). The first set couples N1 and Ez

E" + (k2e - k 2 s 2 )Ez = (4e + aik)Ni - aik N1  (2.12)

zz

and

aN" + (a' - a )N1 + (47reeik - a'$ - ak 2s 2)Nl -ike'E
11 z

while the next couples B and E .

ias2 2 2 ike
E" + (-6 + i.ks2 )E' + (-k s + L__)E

z (e + aiks 2  a z

(Lk-s + k2s)B + sBB'
L (e + iks2 )

and (2.13)

B" -e' + ia'ks 2 +  2ikS2)B' + (k2c - k2s2)B

(E + ciks
2

E' is (Ca' + a - ac')
z (E + aiks2

where

iTy

cmw(l + iv /1 )
L

The warm plasma approximation is achieved by retaining

the VP term in the electron momentum equation. This resulted

in the terms containing v L/w in Eqs (2.6) which appears in a

of Eqs (2.13). This term (vL/ w), which has thus far remained

undefined, is an attempt to model Landau damping of the

11
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plasma wave and will now be explained. Ginzburg's second-

order equations (Ref 3:397, Eqs 20.35) for E and B are

similar to Eqs (2.13) although they do not include Landau

damping.

Landau Damping

That there is Landau damping of plasma waves has been

derived from the Vlasov equation:

df + V . Vf + eE df 0 (2.14)HEm- dV 0(.4

There is linear and nonlinear Landau damping. The latter

is associated with particle trapping when nI = n0 and is

not within the limits of linear theory. The derivation of

Landau damping from Vlasov's equation is discussed in detail

by Chen (Ref 4:213-240) and Ginzburg (Ref 3:122-132), and

I will follow Chen's method closely. The physical interpre-

tation of linear Landau damping was hinted at earlier.

Simply, the plasma wave is damped without collisions by

exchanging its energy with particles satisfying the rela-

tion JV-Vzit < = . These are the particles in the

distribution that have not yet traveled one-half wavelength

with respect to the wave. Hence, initial conditions, such

as the assumption of a Maxwellian velocity Oistribution,

are important.

The form of Landau damping employed in this work was

derived in the following way. First, wavelike solutions

to the Vlasov equation are assumed with first-order pertur-

bations on the equilibrium values. The solutions take the

form: 12
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f(r,v,t) = f 0 (v) + fI(r,v,t) (2.15)

where

1 i (k - Wt)

Vlasov's equation then becomes:
~df 0

if I + ikVzf £ E d (2.16)
1 + m z dV

z

giving:

ieE df 0/dV zm - k zVz (2.17)

From Poisson's equation ignoring E.:

ikE = - 4nen I  = - 47reffffd3V (2.18)

For a one-dimensional problem, the dispersion relationship

becomes:

2
W 0

= -2 f dff/dV/(v - w/k)dv (2.19)k 2  zz
z

So, for large V and small damping, the dispersion relation
z

results from an integration along the real axis plus a

semicircle resulting from the integration around the pole

in the complex Vz plane at V. = w/k. Thus, the dispersion

relation can be given by (Ref 4:216, Eq 7-56):

W 0d f 0/ dV z  7 d 0
1 2 Vf f/k dVz + d- (2.20)2 V- w/k z 2 dV- zVz=w/k Z

where 2

P is the Cauchy principal value (--F in this case).

13



The imaginary part of this dispersion relationship account-

ing for the wave damping is:

1 ziTw,2k df0  (2.21)
Vz=w/k

z

for a Maxwellian:
^ _V2

df 0  _ -2v -V2
df0 - -2V exp(..)
dVz  /7V + 3  Vth

Therefore, since 2

z V L/Vc and we prefer not to make the

substitution w =w
p

-im(w/w ) = .88( ) eXP(--) v (2.22)

pV-) ep( V LW (.2
Pth VthL

where

V has replaced Vz as the phase velocity of the wave

The wave equations for N1 and Ez were presented earlier.

The wave number in the z-direction (k ) for these waves was

determined as:

k(z) = k /Ez) / T/mc 2  (2.23)

where

k = w/c

The complete derivation of Eq (2.23), including assumptions,

is included in Appendix A. The wavelength and phase veloc-

ity of the longitudinal waves were determined directly from

14
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k z . The desired result, v L/w was then obtained from Eq

(2.22) as a function of z throughout the plasma and is

shown in Figure 4. Note that v /Lw is temperature independ-

ent, since in the ratio V /Vth each quantity has a T1
/ 2

dependence. Past the critical surface, the wave is expo-

nentially attenuated by c so Landau damping is not tediously

modeled there.

Still, the expression for Landau damping Eq (2.22)

fails when V Vth, and V= 2Vth when E = .4 or about

halfway into the plasma. In that region, v w is large
L

which makes for a bad approximation, since the pole in the

complex integration (Eq 2.20) lies far from the real axis.

This, coupled with the fact that the plasma wave is gen-

erated closer to the front boundary for increasing tempera-

tures, causes a breakdown of the warm plasma model at high

temperatures. This will be discussed in Chapter IV.

Simply, for the bulk of the results presented in this work,

V 1w was taken as a constant in the plasma. Still, as will

be shown later, the correct form of v w is important.
L

Having presented here the equations, assumptions, and some

background, the next chapter will deal with the numerical

S4 methods used to solve the problem.

1U
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III Numerical Methods

Starting with the appropriate set of Eqs (2.6) or (2.9),

second-order equations were derived that described the

fields inside the plasma. For the cold case, it was found

that one equation for Ez could be written. But, for the

warm plasma, a set of two coupled equations was required.

The equations, (2.11) and (2.13), were solved numerically

inside the plasma subject to appropriate boundary condi-

tions. The values thus generated were used to solve for

the other field quantities, N1 , Vos and the Ponderomotive

force. This entire procedure will be described in detail.

Gridding

The numerical solution began with a choice of a grid-

ding scheme. Due to the resonance expected at the critical

surface, very fine numerical resolution was needed in that

region. However, the same resolution was not necessary in

other parts of the plasma so a differential gridding

scheme was adopted. This affected the form of the central

difference approximations to the first and second deriva-
Ii

tives in Eqs. (2.11) and (2.13).

The problem of derivatives across these nonuniform

spaces was handled by adopting a technique used by Smith

(Ref 5:139). Beginning with adjacent nonequal mesh spaces:

h hh

n-i n n+l

17
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The Taylor series expansion of a function A(z) about a point

"n" can be written in two ways.

An+l = An + OhA' + h2 2A" + (terms of order h

(3.1)

A 1 - An - hA' + h2' 2A" - (terms of order h2)

eliminating A" gives:

A' A n+1 A n-1 )An (3.2)
qh(l + )

and eliminating A' results in:

An+1 + A n 1- An - A nA" -=2 (3.3)
2 h 2/2 + ch2/2

The error in the second-dorivative approximation is of

order h and is the driving source of numerical error.

The majority of the plasma was gridded with equal mesh

spaces in which case, Eqs (3.2) and (3.3) reduce to standard

centered differences. Two mesh sizes were specified: a
VL 1-2)nath

very fine mesh spacing (on the order of -- x 10 ) near the

critical surface to resolve the resonance peak and a coarser

gridding (on the order of 10 - 1oo) in the rest of the

plasma. The size of the mesh spaces (coarse and fine) was

determined somewhat bi ... al and error. Each was reducedI

until the field values and absorption did not change. The

coarser gridding was required to be smaller for the warm

plasma case due to the plasma waves present before the

18
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critical surface. In the region between the two extremes,

each mesh space was doubled until the spacing was slightly

less than or equal to the predetermined coarse grid maximum.

The remainder of the grid was then completed with equal

mesh spaces of that size.

Differencing the Equations

To implement the sweep method employed, the value of

each variable at mesh point "n" was assumed to be repre-

sentable by:

E= PE + Q (3.4)Ez(n+l) Pzn

in the cold case, and for the coupled case

Ez(n+l) KEz(n) + LB(n) + M

(3.5)

B(n+l) NEz(n) + OB(n) + R

where

K, P, Q, L, M, N, 0, and R are constants

These equations were used in conjunction with Eqs (3.2)

and (3.3) to difference Eqs (2.11) and (2.13). The objec-

tive w.as to solve the differenced equations for the values

S of the constants at each mesh point in the plasma subject

to the correct boundary conditions. Details of the deri-

vation are included in Appendix A.
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Application of Boundary Conditions

The equations were solved by employing boundary condi-

tions at the front face and past the critical surface in

the plasma. The two-sweep method began by setting the

fields equal to zero past the critical surface in the

plasma. Two wavelengths past the critical surface was

chosen as the point where the fields vanished. This dis-

tance proved to be adequate to assure sufficient decay

since the wave was decaying exponentially in this region.

After applying this boundary condition, the constants in

Eqs (3.4) and (3.5) were evaluated at each mesh point. The

sweep began at the point where the fields vanished and pro-

gressed point by point to the front face, where the radia-

tion boundary condition was applied. The radiation boundary

condition forced conservation of the fields at that point

and determined their values. Then it was a simple matter to

solve for the field quantities point by point using the

previously determined constants.

Zero Boundary Condition. The zero boundary condition

* took the form:

* E (4) B(4O) = 0 (3.6)4 z

which was interpreted as: P = Q = L = M = N = 0 = R = K = 0

Due to this boundary condition, the constants not multiply-

j. ing a variable (M and R from Eqs 3.4 and 3.5) were found to

be identically zero throughout the plasma. Therefore, they

were not necessary and the equations became:
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E = PE() (3.7)

for the cold plasma, and

SEz nl = KE + LBz(n+l) z(n) (n)
(3.8)

B(n+l) = NEz(n) + OB(n)

for tile warm plasma. In other words, the fields were

assumed to vanish two free space wavelengths past the crit-

ical surface. This was accomplished by setting the con-

stants equal to zero at that point. This made some of the

constants unnecessary. The remainder of the constants

were then determined at each mesh point marching toward the

front face of the plasma.

Radiation Boundary Condition. At the front face, the

radiation boundary condition was applied. From the fact

that:

E. E eik(sx + cosez)
inc 0 . einc

B inc= B0 eik(sx + cos~z)

inc (3.9)

Ec Es ik(sx - cosez)E E e
sc 0sc

B =B ik(sx - cos0z):B B Bse
sc

it can be shown that

E' + ikcosOE = 0Esc sc

and (3.10)

B' + ikcosOBs = 0
sc sc
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7

and since E En c +ESc and B inc +sc

E' + ikcosOE = 2ikcosOE.

= 2 i kf lCO' (3.11)

B' + ikcoseB = 2ikcos6B.~inc

These (Eqs 3.11) are the radiation boundary conditions

appropriate at the front face. They were applied to the

electric field in the cold plasma case and to the electric

and magnetic fields when they were coupled in the warm

plasma case.

The radiation boundary condition was applied by solv-

ing the Taylor series expansion of the field at the front

face simultaneously with the wave equation Eqs (2.11) or

(2.13). The equations are each solved for the first deriv-

ative of the desired quantity (Ez or B). Since each is

treated similarly, only Ez will be developed in this dis-

cussion. The solution is then substituted into the radia-

tion boundary condition and that equation is solved for Ez.

When Ez has been found, the forward sweep begins using

Eqs (3.7) and (3.8). The complete derivation of the appli-

cation of Lhe radiation boundary condition is contained in

Appendix A.

The forward sweep completes the calculation of the

differenced variable(s). Other quantities of interest were

then calculated using Eqs (2.3) or (2.6). Plots of these

quantities are contained in Appendices B and C for both

cases and a discussion of the results follows here.
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IV Results

A wide variety of conditions were investigated and a

large body of results obtained from the two computer codes

written to implement the two-sweep algorithm just described.

In this chapter the major results will be presented. The

data from which these results were derived is contained in

Appendices B and C. The figures in these Appendices indi-

cate the spatial variation of important quantities in the

plasma. The quantities investigated were the x and z com-

ponents of the electric field, the magnetic field, the

oscillation velocity of the hot (nI) electrons, and the

Ponderomotive force (time-averaged Lorentz force or radia-

tion pressure). The collisional and collisionless (Landau

damping) absorption of the electromagnetic waves energy was

also determined as a function of the angle of incidence.

Some of the results, such as the percentage of the

laser energy absorbed by the plasma are independent of

power, barring instabilities, while others scale as the

electric field (n and V os). Ponderomotive force is

directly proportional to power as is the energy of the hot

electrons (TH ev). The results will be discussed independ-

ent of power scaling and then the effect of power will be

considered. Temperature effects, such as Landau damping,

will be dealt with as they apply. Finally, the validity

of these methods will be discussed referencing both power

and temperature concerns.

23

" ..t ... ", " i



Parameters

Some parameters were not varied throughout the analy-

sis. They are now identified for reference and comparison

with other works.

Ein c = sinez

E inc = cose
x

B. = -l

inc

X = .001 cm (10 Pm free space wavelength)

w = 1.88 x 1014 sec
- I

nc = 1.12 x 10 19/cm 3 (critical number density)

k = 2n/X = 6283 cm
- I

L = .002 cm (critical length)

It is readiJy determined that P0 ' the incident power in

2
this analysis, was 120 W/cm As mentioned, linear power

scaling was employed to determine values of variables of

interest at current laser powers.

EX and B

The field quantities E and By were calculated for
both cold and warm plasmas and are included in the Appendi-

ces for reference. Although Ex does exhibit a peak at the

critical surface, its value there varies from only 2-4 esu

over all the cases investigated. The transverse magnetic
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field was virtually unaffected by the resonance at the

critical surface, and its peak in the plasma remained

approximately 1.5 esu throughout the study. Since Ex does

not contribute to resonance absorption other than through

collisions, and drifts involving the magnetic field were

not considered, these two quantities were not of significant

interest and will not be further discussed.

E (Longitudinal Electric Field)

The magnitude and characteristics of E are of interestz

because it is the component of the electric field that

excites the plasma wave and is responsible for resonant

absorption.

Cold Plasma. The longitudinal field in the cold plasma

exhibits a marked resonance at precisely the critical sur-

face. The magnitude of the field is inversely proportional

to the value of v/w. The fact that IEzI av/w was derived
max

by Ginzburg (Ref 3:388). Some comparisons were made with

the maximum electric fields predicted by other authors.

For various angles of incidence, results comparable to

those of Denisov (Ref 1:574) were observed. For example,

for sinO = .3; v/w = .002, JEz = 52 and for v/w = .02,
max

JE z = 5.1 at the same angle of incidence. The magni-
max

tude of E and its dependencies are much different for the

warm plasma.

-Warm Plasma. Linear Landau damping, as well as colli-

sional inverse-bremsstrahlung, affect the longitudinal
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electric field in the warm plasma regime. As noted earlier,

temperature effects moved the resonance peak of Ez toward

the front of the plasma. The magnitude of the field at

resonance was also much less than that observed in the cold

plasma. The damping was more severe and the resonance

moved further to the left as temperature increased. The

fact that the field maximum decreased is not surprising

since the turning point of the wave varies with temperature.

The wave turns (is reflected) when:

= yT/cmn(l + ivL /W) (4.1)

Hence, for higher temperatures the wave is reflected closer

to the front of the plasma (at a larger c) and the evanescent

region becomes larger. This allows less of the evanescent

wave to reach the critical surface and initiate resonant

absorption. The wavelength of this electrostatic wave (EZ )

is, not surprisingly, the same as that for nl:

A z(Z) = Y yT/mc2 / /C(z) (4.2)

This wavelength (X ) derived from k (see Appendix A) was

observed in the study. It follows from Eq (4.2) that for

higher temperatures, in regions where £ is small, the

wavelength is greater than that of the incident light and

Xz clearly approaches infinity at the critical surface.

For low temperature cases, the wavelength can be much

shorter than the incident wavelength very near the critical

surface. Examples of this can be seen in Appendix C. For
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instance, one may compare the wavelengths of Ez near the

critical surface in Figures C-8 and C-15.

Spatial Dispersion. To conclude this discussion of

the longitudinal electric field, the effect of spatial dis-

persion will be addressed. Ginzburg (Ref 3:389) suggests

that the use of a local value of c will not be valid if the

electron encounters vastly different electric fields during

its travel in the characteristic time under consideration.

Ginzburg's equation for the distance over which E decreases

to half its maximum value in a cold plasma is (Ref 3:389,

Eq 20.24):

Az L vc/W (4.3)

The results obtained here for the cold plasma obey this

relationship. This accounts for gridding difficulties

encountered as v/w was reduced because in addition to the

increase of IEZI , the scale length given by Eq (4.3)
max

decreased. The scale length is on the order of a Debye

length for the cold plasma when v/ = .002. The gradient

lengths observed in the warm plasma are clearly longer.

Figure 5 shows for each temperature at what power the hot

electrons (nI) will travel one scale length in one period

(-) At powers higher than this, spatial dispersion should

not be ignored. The scale length referred to is the same

as that above, i.e. the distance over which E decreases toz

one-half its maximum value. The figure shows both the cold

plasma case and the warm plasma results for VL/w = .1. The
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results for the warm plasma when ') L/ .67 are not signif-

icantly different. Spatial dispersion will not be con-

sidered as a limiting factor in the models application.

Still, it warrants more study, and the above is offered as

both a motivation and a starting point.

The Plasma Wave (n

A plasma wave exists because the electric field has a

component (Ez ) along the density gradient in the plasma

causing charge imbalance and, hence, a restoring force.

The electrons oscillate at the phase velocity w/k z, where

k z here is the same as the k z derived earlier for E z . In

the cold plasma, the enhancement of n1 at the critical sur-

face is so large as to cause concern over the linearizing

approximation n 0 >> n I . In the warm plasma, the wave gen-

erally has a smaller amplitude and is itself allowed to damp

noncollisionally by exchanging its energy with colder elec-

trons in the body of the Maxwellian distribution. Thus,

the wave is a key performer in both the warm and cold

scenarios.

Cold Plasma. The cold plasma wave is very much like

E In fact, no second-order equation was solved for

and .it was obtained by usincg the calculated values of Ez

in an equation derived lom the four basic relationships

Eqs (2.9).

n = - 'Ez /c4Te (4.4)
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Clearly, n1 behaves much like Ez and, likte Ez, it is pre-

vented from becoming infinite at the critical surface by

collisions. The plasma waves relationship to E leads toz

the cold model predicting increasing n1 for increasing tem-

peratures (decreasing v/w). Figure 6 shows the variation

of n1 with temperature for the cold plasma, and the warm

plasma with v L/w = .1. The figure demonstrates this by

detailing for what power and temperature the peak plasma

wave amplitude (near the critical surface) equals
1.12x 119 m-3

1.12 x 10 cm (the value of n0 at the critical surface).

This further serves to show when the linearizing approxi-

mation n0 >> n1 is valid. The region of validity is shown

on the figure for both the cold and warm plasma models.

The additional restriction on the validity of the warm

model will he explained later. The characteri.stics of the

warm plasma electron wave will now be explored.

Warm Plasma. When temperature effects are introduced,

n is reduced greatly in magnitude and spread over a larger

portion of the plasma. For high temperatures large waves

exist far from the critical surface and may even impinge

on the front boundary. This translation of the wave from

the critical surface to the boundary occurs because as the

electron temperature increases, the hot electrons created

at the critical surface are allowed to transfer their

energy more readily to the other electrons in the distri-

bution. This suggests that a temperature dependent as well

as spatially dependent Landau damping is appropriate.
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Nevertheless, as mentioned earlier, the electron plasma

wave should be greatly attenuated in the vicinity of the

front face because V H = VC there. The reason for this

(discussed in Chapter II) is that when V1 = VC , the pole in

the integration of Eq (2.19) lies far from the real axis

and contributes a large imaginary part (damping) to v

This effect is ignored in the derivation of Eq (2.22) and

thus Figure 4 does not show this large damping and it was

not incorporated into the model.

In the warm plasma, as in the cold, n1 was derived

from the field quantities. In this case Ez, B and Eqs (2.6)

were used. The equation derived was:

aiks 2

n (EI + sB'/)/( + 4Te) (4.5)

and centered differences were used for the derivatives. In

addition to describing the variation of the peak of n1 with

temperature for vL/ w = .1, Figure 6 shows where the velocity

of the hot electrons equals that of the cold. The signifi-

cance of this has been discussed, and the plot establishes

a lower bound on the region of validity of the warm plasma4'

model. The plasma's absorption of the electromagnetic

energy will now be considered.

Absorption

Two methods of absorption of electromagnetic energy by

the plasma were analyzed. They were collisional (electron-

ion inverse bremsstrahlung) and collisionless (Landau
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damping of the plasma wave). Other absorption mechanisms,

including instabilities, were ignored.

The power absorbed was calculated by comparing the

reflected electric field at the boundary of the plasma with

the incident field. The reflected fraction "R" was derived

in the following way. Since:

Esc = Etot - Einc (4.6)

z z z

where

E sc is the scattered electric field at the front face

E inc is the incident field (sinO)z

and Etot is the value of the field at the front facez

The value of Esc is determined because the values of thez

total and incident field are known. From geometry:

Esc Esc /tan (4.7)
x z

and thus

Esc sc*<S > Es Esc

z sc x x
R <Sz > or 2 (4.8)

z inc coO

where

<S > is the average value of the Poynting vector in
Z the z-direction

This determines R, the percent of the incident field

reflected.
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The absorption of the laser power varies with the angle

of incidence. As the angle of incidence increases, the

classical turning point moves toward the front of the

plasma, and the longitudinal electric field travels further

through the evanescence region before reaching the critical

surface. For small angles, Ex is the dominant field and

electron motion is nearly parallel to the density gradient.

Hence, the electrostatic charge separation is small (Ref 1:

574). Therefore, an angle of maximum absorption is achieved

between these two extremes. It is accepted theoretically

(Ref 3) and has been proven experimentally (Ref 6) that this

angle lies between 200 and 250 for the critical length under

consideration. Although the absorption of the field in cold

and warm plasmas has somewhat the same magnitude, the

methods of absorption are different. This will now be

explained.

Cold Plasma. The energy absorption in the cold plasma

is due solely to the collisional damping of Ez. This reso-

nance absorption is shown in Figure 7 to have a maximum of

about 50% at 180. This is in agreement with cold plasma

work in general and for a low temperature warm plasma

investigated by Forslund (Ref 7) using methods similar to

those employed in this work.

Warm Plasma. The warm plasma absorbs energy from the

electrostatic wave through electron-ion collisions and

also as the plasma wave is Landau damped. As can be seen
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from Figure 8, the absorption due to Landau damping appears

to compensate for the reduction in magnitude of Ez and the

consequential reduction in electron-ion collisional absorp-

tion. Absorptions of nearly 50% were seen for this low

temperature case (T = 637 ev) which is similar to the cold

plasma results and those of Forslund (Ref 7). However,

absorption results for the warm plasma are highly sensitive

to the form of Landau damping used, especially at high tem-

peratures.

Modeling Landau damping as a linearly increasing func-

tion of z with a maximum, as it appears in Figure 4, proved

unsuccessful. This attempt was curtailed when widely dif-

fering absorptions were attained for only small variations

in the slope of the linear section. This can be explained

by looking at the different number of electrons (N1 ) that

are heavily damped between two cases (two different slopes).

Then, absorption would be a trade-off between this energy

exchange with electrons and the propagation of the wavear
away from the critical surface. For example, at large

angles of incidence and high temperatures, anomalous absorp-

tion occurred due to the closeness of the plasma wave to

the boundary and the field structure there. In one case

(T = 5100 ev and 0 = 1.1 radians) greater than 30% absorp-

tion was observed.

For the above reasons, it is doubtful that anything

concrete can be said about absorption due to Landau damping

at high temperatures until some of the assumptions made in
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deriving it are relaxed. However, these r.--sults lead one

to believe that Landau damping should be temperature

dependent.

Ponderomotive Force

The Ponderomotive force is a nonlinear force caused by

the gradient of the electric field. As one can see from

Figure 9, it is large at very low power densities and,

including its effects, might be the first thing one would

suggest as an improvement to this steady-state model. The

force is derived from the electron momentum equation by

Chen in Refs 4 and 8. His derivation is also included in

Appendix A of this report. Ponderomotive force is included

here as a result derived from the previously calculated

field quantities Ex and Ez. The equation solved was:

2 E2wVE
- - _ 5

FNL 2 167 (4.9)

where

FNL is the Ponderomotive force

and E2 + 2 is 2<E 2>
s  x z

Thus, it acts on both ions and electrons, but is more

effective by the factor m -n the elctrons.
me

The behavior of F is similar in both the cold and

warm plasma. In both, it exists primarily at the critical

surface. The nejative force in front of the critical
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surface serves to pull electrons from the higher density

region to the lower. This results in the density profiles

observed in experiments (Ref 9) and modeled by theoreticians

(Refs 10 and 11). Evidently, the force causes a depression

in the density profile in front of the critical surface.

This new profile, when allowed to smooth, becomes a step

profile causing the plasma to go from underdense (w p/W < 1)

to overdense (w p/ > 1) in a very short distance. This

effect is modeled successfully in Ref 11 for an electron

temperature of 2 Key. They observed a maximum Ponderomotive

force of 1.25 x 103 ergs/cm 4 at 120 W/cm2 while for 2.55 Key

and \L/w = .67, a value of 1.5 x 103 ergs/cm 4 was obtained

in this work with a linear profile. The Ponderomotive

force is very large in the cold plasma due to the steep

gradient in Ez. Figure 9 shows the Ponderomohive force as

13 2a function of temperature for a power of 10 W/cm 2 . The

plot also includes the thermal pressure force of the plasma

kTV(n 0 ).

Hot Electron Energy (TH)

The velocity of the hot electrons is a concern because

they may escape the plasma without depositing their energy

if they get too hot. This would reduce energy absorption.

In fact, these suprathermal electrons have been observed

and have been given a great deal of attention (Refs 12 and

13).
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In this work the temperature of the electrons was deter-

mined by their oscillation velocity (Vos. The Vos in the

cold plasma is the familiar eE/m(v - i(K), while in the warm

plasma, additional terms appear due to the pressure gradient.

For the warm plasma:

eE iksyTn 1  yTn1 n;
V S m(V - i) n0m(VL - i) 2

n~m(,vL -Ki)

1 .T(4.10)
(vL - iw)mn0

where all the terms have been previously defined.

The pressure related terms in Eq (4.10) are small correc-

tions to the electric field term and it was discovered that

they could be ignored. However, the velocities plotted in

Appendices B and C include the effects of these terms, as

do Figures 5 and 6.

Note that Figure 6 shows at what powers and tempera-

tures the energy of the hot electrons is equal to that of

the background (cold) electrons. Since Landau damping

requires V% >> Vt this curve provides an important check
yth'

on the warm plasma model.

Validity of Assumptions

This is a discussion of the major assumptions made in

this report. An important assumption is that the ions arer

immobile. Other concerns are the validity of the lineariz-

ing approximations and the effect of spatial dispersion.
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Both Ponderomotive and Coulomb forces act on the ions.

The Coulomb forces are small and can be ignored. The result

of the Ponderomotive force is the modification of the plasma

number density profile mentioned earlier. It has been

shown interferometrically that the Ponderomotive force can

modify the plasma density profile in about a picosecond

(Ref 10:184). This result was obtained by illuminating

glass microballoons with a Nd-YAG laser. Hence, the plasma

21 -3
was penetrated to a critical density of 10 cm The

14 2experiment was conducted at a power of 10 W/cm 2 , and the

profile modification was observed whenFNL F = FUp. The

time scale of interest in the steady-state problem developed
-15

here is on the order of 10 seconds, somewhat shorter than

that above. The Ponderomotive force, although large, will

not cause the ions tc move appreciably in 10- 1 5 seconds.

The Ponderomotive force is shown in Figure 9 for a power of
S113 /c2 0o 2

1 W . Since At 2 - at this power and at

still higher powers, one can reasonably say that ion motion

is insignificant in one time period.

The effect of spatial dispersion was discussed earlier

and will be sumnarized here. It seems that the cold plasma

model will definitely be affected by spatial dispersion,

and the warm plasma model should also incorporate it for

application of the theory at powers higher than those indi-

cated in Figure 5. Still certain density profiles could be

found for both the cold and warm cases where the effect of

spatial dispersion would be minimized (lonqer critical
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lengths and larger collision frequencies l:i: ediately come

to mind).

For the purpose of this work, two concrete limits were

chosen on the validity of the models. For each temperature,

these factors limit the powers at which the models can be

applied. The first factor is the validity of the lineariz-

ing approximation n1 << n0. For powers greater than that

at which nI 
= n0 this approximation is invalid. There is

no lower limit placed on the powers for which the cold

plasma model is applicable. The warm plasma is limited by

Landau damping to powers where the velocity of the hot

electrons is greater than the velocity of the cold. This

is also shown on Figure 6. Spatial dispersion remains as an

additional concern.

|I
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V Conclusions

The linear models of cold and warm plasma resonance

absorption developed here give results comparable to those

obtained by other theoretical means and experiments. The

paper serves as a collection of many facts, theories, and

ideas about resonance absorption. The results indicate

that the numerical methods are sound and the method was

found to be conservative of computer time and space. When

ion motion is ignored, the steady-state method is applicable

to powers of interest in today's fusion piogram. Their

respective areas of applicability are indicated in Figure 6.

Correct modeling of Landau damping and spatial dispersion

could strengthen or weaken the preceding statements. Because

resonance absorption is a more efficient way to absorb laser

energy than simple collisional absorption, lasers of fusion

devices should be positioned such that maximum resonance

absorption is achieved. Of course, it is not that simple,

since targets are spherical and uniform energy deposition

is desired for the implosion. Also, the ideal angle will

change with the density profile. Still, resonance absorp-

tion will play an important part in a laser fusion device,

I . and this work is only a starting point in the process of

applying the technique to the machine. If these models

are to contribute further in this process, they might be

improved in the following ways.
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Current work in the field should give cne some idea as

to what direction a follow-on study might take. In recent

works, there is little mention of Landau damping while ion

motion and subsequent profile-steepening have been investi-

gated. This suggests that a nonlinear analysis can be

used to more exactly model the warm plasma, and that time

dependence is also important. The large effect that Landau

damping had on the absorption of electromagnetic energy in

this study is additionally troubling. These suggest possi-

ble areas where an improvement on the current models can

be made.

An important improvement to the warm model would be

the ability to correctly model the expected final distribu-

tion function. This could be incorporated by using the

Vlasov equation instead of the momentum equat.on. If this

were done, the assumption of a Maxwellian distribution

could be relaxed and a bump-on-the-tail distribution func-

tion could be used. Then, Landau damping could be tackled

in a straightforward manner and some of the problems

experienced here could be overcome. This would also allow

for an assessment of the interaction between the two tem-

peratures (relaxation time) that has not been addressed

here.

More simple, perhaps, would be to relax the assumption

of immobile ions in a step-by-step manner. After one case

has been studied, the initial profile can be adjusted by

applying the Dmotive force calculated in that
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steady-state case and moving the particles. The new profile

could then be illuminated and the procedure repeated.

A similar approach could be used to investigate non-

linear effects. First, the problem could be solved by the

methods herein. Then, the values obtained could be used to

solve Eqs (2.1) to the next order. This nonlinear analysis

might prove fruitful if more accurate results were desired

or instabilities were a concern.

It would be useful to investigate the stability of the

two-sweep algorithm employed in this analysis and to deter-

mine its applicability to related sets of equations.

In conclusion, the linear modeling of warm and cold

plasma behavior gave results, including absorption, compara-

ble to experiments and other work on resonance absorption.

The behavior of the important quantities was detailed and

physically explained. Important consequences of resonant

absorption were shown and the regions of theory validity

were established. Various ways to improve the models were

suggested.
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Appendix A: Derivations

Linearized Equations from Fundamental Equations TE Mode

Equations:

dV
mn(- + vV + V VV) + Vp = enE

dt

1 dB
V x E = -d-- c dt

4 7T idE
V x B = 4 j +- -c- c dt

(A.1)

V E = 4nne

V B = 0

j = neV

For TE mode (see Figure 3) assuming wavelike solutions

iksx - iwt
E = E y + Ely e

B iksx - iwt iksx - iwtBOx + Belz e

where quantities with subscript (1) are perturbations about

equilibrium so:

VxEd C d +E iwt
V xEE- F i + -,-- E k ; where E + E

,_ dz -y Ux -y y Z0 -yl

and
1 dB 1 dUX i ei t 1 dB0z

- - -- x + - B e
c dt c dt c lx c dt

+ 13 B ic-i~t

c lz
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- 1 dBtherefore, since V x E = - --

d E e-iwt d 1 dOx -i
dz ly dz Oy c dt + ik Blxe

d -iWt d 1 dBOz -it
TEye + Ety + ik Bze

and:

d E = ikB x  (A.2)

sE = B (A.3)
y z

Now we must use

V xB -4r j + 1 dE
c c dt

First, we will find j from the momentum equation:

- iwn 0e-iWt - iwnV e -2iwt + vn0V e -iWt + Vn lV e -2iwt

=[en E0 + en Eye
- 2 i wt + en E0e - i t + en 0Ee- iWt

SdyTn0  d Tne-iWt/m

dz dz 1

this gives upon neglecting products of second-order pertur-

bations

I dyTn0
en0E0 dz =0

-it -2iwt. mn 0VlIte (v - iw) + mnlVl e (v - iW)

-2iwt -iWt it
- en1 E lye + en E 0e + en0 Ely

d Te-iwt

- dz yTnle
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neglecting second-order terms and droppini 
.ubscripts gives

nV-iwt +-ni~ewt d -iwt]/~

no = [en E0e + en0Ele - d yTnle - i w)

ikE e-iwty

therefore, since j = n0eV1

ik+ i4e 2 n0) i4reyTdn0 n1

ks~z + 1- = --3 + i1) + cm(w+ iv)dzn0

yTi4 e dnI
cm (w + iv) dz

This yields, when accounting for direction,

F dB~1- dn0 n1  dn>

iksB + - ikeEyj + a- -n a -
L Z z J y L d n0  dz

- iks(n I )i

this gives

- iksBz + -dz ke ikEy (A.4)

and for equilibrium values
dn 0 n 

dn1

adn 0 n1  adz 1 - 0 and - iks(n1 ) 0

E" TE Mode

To find the wave equation for E," substituting Eqsy'

(A.2) and (A.3) into (A.4)
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- iks(sE + ik dz = - ik Ey

ks2E -1 E" - kE 0
y kY y

E" + k 2 (c - s 2 )E = 0 (A.5)
y Y

Linearized Warm Plasma Equations from Fundamental Equations

TM Mode

To find the four basic TM mode equations and eventually

second-order equations, we again begin with Eqs (A.1)

dV
mn( + V + V -VV) + VP = enE

second order

neglecting products of other second-order terms and linear-

izing for wavelike perturbations

+niwV +vnV 1 dP0 1 dP1 iksn dz v + + -Pl
0 -1 0-1 mdz m dz m

e(n 0 + n1 ) (E + E)
m -0 -l

so

e 1 dP 0
" 0-0 = i dz

and

d2 dP1S - ~(n E + n E _ iksP
m 10 0 1 m dz m 1

l =en0(v - iW)

from V x B -j + 1
- c c dt
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e 2 .( p 1 i k s P )

4 4 (nE 0 + 0 1  edz e 1 (A.7)

since,

E E E ~ei(ksx - wt)

and E has x and z components,

1 dEiW iW
1E i- Ez (A.8)c d c -x c

where Ex and Ez are the perturbed quantities (E and Ez

Since we know that

e dP 0

en 0E0  - dz

giving

n1yT dn 0

nE0 en 0  dz k (A.9)

from (A.6), (A.7), (A.8) and (A.9)

d(B 0 + B I ) ^ 47e 2  dn0
+ ~~ 4 7T____ e ______n~yT ___0

iks(B 0  B)k dz (V - i )c;2\ en- az

ynliksT dn
1yT 1

- i e T k + n 0 Exi + n0E z

- ikExi - ikEz k

so, for the perturbed uantities
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dBdz - ikeE - aiksn (a)
x1

(A.10)dn1- ikcE z + a~nI - a d= - iksB (b)

1 dB
now V x E - dt

c dt

or, for the perturbed quantities

dE
- iksE + x = ikB (A.11)z dz

and V E = 4e(n0 + n1 ) yields

dE
ikSEx dz 4 Ten I  (A.12)

Cold Plasma: E" from Linearized Equationsz

Now we will derive the second-order equation for E"
z

in a cold collisional plasma beginning with Eqs (A.10)

dB ikE and - ikE = iksB
dz x z

Employing Eq (A.i!) gives

-iksE Z+ dz- [dB/ikc] ikB

differentiating

- ikcE z = iksB

yields

dB 1 de dEz
dz s (dz + dz

54



therefore

is2 E d dE +dEz/k]ic
ik E z [d-+---ic -z ik

multiply through by ik

22 __ d zd
z z £ z

clearly,

E a

zE dZF-' = (En)

dz

and thus

k2(--s2)E + [E (9kn)'3P + Ell 0 (A.13)z z z

Warm Plasma: N" and Ell from Lineariza d Equations
_ _ _ _ _ 1 __ ~z _ _ _ _

Equations for the plasma wave in terms of the electro-

static component will now be derived using Eqs (A.10),

(A.11) and (A.12). Eq (A.11) gives

=sikB + siksE (l4

xS

Eq (A.12) gives

iksE' + E"ll 47en' (A. 15)
x z 1

a. Eliminating F~ betxwcon Eas (A.14) and (A.15) and using Eq

(A.l0.b) for iksB gi,':cs:
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dn 1 2
(- ikcL z + an - a -dZ + iks 2L )ik + F" = 4-en

or

E z + (k2 - k 2s2 E (4re + aik)N- aikEN (A.16)

Now for N":

differentiating (A.10.b) w.r.t.z

- ikCE' - ikc'E + a'2n + an' - a'n' - an" iksB'
z z

(A.16)

from (A.10.a) and (A.12)

47en - E'
B' aiksn + c[ z (A.17)

substituting B' from (A.17) into (A.16)

-ikcE' - ikc'E + a' n + an' - a'n' - an"
z Z

47en- E'
iks aiksn + c [z

and
t

aN" + (a' - a6)N' 4 (47Tceik - a' - ak2 s2)N
41 1

II% = -ike'E (A. 18)

Warm Plasma: B" and :" zfrom Linearized Equations
z

Ir Now we shall derive second-order equations coupling

By and E in the warm plasma. Beginning with (A.10.a)
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+dB

-- ikEE~ + dB19-iEx adz
n = aiks (A.19)

using (A.12) and (A.19) one arrives at;

ak 2s 2E + aiksE,' ikcE + dB/dz (A.20)x z x

where

aCL-- 47e

differentiating (A.20) w.r.t.z. and using (A.1) for E'

2 2 2 2(ikc' - a'k s )E + (ike - ak s )(ikB + iksE)

+ c'iksE z + aiksE'z  B" (A.21)
z z

using (A.20) to eliminate E xin (A.21)

(ik22 - aiksE + B22k' . . . .2 2 (iks - k s
L(ikc - ak s

(ikB + iksE + aiiksE' + aiksE" : B" (A.22)-z z

Using (A.12) to eliminate n and n1 from (A.10.b) and usinq

(A.20) to eliminate Fx while employingi (A.11) to eliminate

E' from the rcsult, one obtains:
x

aKiks (- iksi z )
- + 2 +

(ike - ks ) (ike -xk s"
461

•2 .

+ xkE' sksB + Lk 2 s 2 E - " iksB
z z z
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or

-CtE"+ - i(xc2 ks 2- )z a s ikc) Ez
((E + oaiks

-(iks - czk 2S)B - csB 2 (A. 23)
(E + ctiks

Substituting (A.23) into (A.22) for Ell yields for B" after

algebra.

B" + icx'ks 2 4- a~iks 2 )'+( 2 E- k2S2

(c + iks2)1

2
- Eiks(ca' + aOE - acl&)/(c + oaks )(A.24)

z

Cold Plasma: Differenced Equations Solved for the Constants
in the Plasma

Now we will difference Eq (A.13) for E z n the cold

plasma employing techiniques described in the paper. Eq

(A.13) can be written as;

a E + d [E b I + Ell= 0
z z z z z z

where

a - k2(C -s)2

bz

thus

ira E + E c + b F; + Ell 0
- z z z z z z
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where

db z
z dz

Accounting for differential mesh spacing and substituting
E =p + qandE PnE +gvs

En+l PEn n Pn- i + qn-l gives:

b np b n(1 _ '2) P
n n an O n n n n

b+c qn + [b n' 2_

n bq n + [ En l (A.25)

where

2 h2 h2
tn lh( +) and 2 + 2

therefore,

ena n

nL
Pn-I n c I  (A.26)

q n n (A.27)
n-i cl

where

bp b(I - 42) n 1N + n p n  -n + n l
( an + n n n n

When the zero boundary condition is applied q(N) is set to

- zero, and the remainder of the qn 's become 4 by Eq (A.27).

All the pn s are specified by Eq (A.26) and at the front
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face, the radiation boundary condition is3 .,plied. How that

boundary condition is applied follows.

Eliminating E" between the Taylor series expansion ofz

Ez at the first mesh point, and the wave-equation (A.13)

one obtains:

2(E 2 - E 1  2
0 = 2 h E' + az E + CzE 1 + bzE'

h 1 1

where az , bz , and c z have been previously defined and 1

means evaluated at the first mesh point. Using the radia-

tion boundary condition for E' and the fact that E2 = P1 E1 + ql

the above equation becomes

2(pEI + ql - El) 2 - ikcosOE

h 2 I- 2ikcos nc- 1

+ azE 1 +c zE + b(2ikcosOEin - ikcosOEl)

Solving for E 1

h [2q1  22ikcosOE. ) + b 2ikcos 1E i
-h h ln z ~ ~ CO incl

E 1 hE 1 2p , 2 2ikcos1hco + h + a + c - b ikcosO

h2 h2 h z z z

(A.28)

Warm Plasma: Differencc }:quations Solved for the Constants
in the Plasma

r
The first !tcp in the solution process is to solve for

the constants relatin; ajacent field quantities. Eqs (A.23)

and (A.24) were solved in general as follows:

60

-AJ



B+ bB' + CzB = + elz (A. 29)

a z, + b2 z' + c2z d 2 BI + e2B ; z E (A.30)

taking

Zn+1 fnBn gnZn + h

B n - k nB n+ Zz + pni n+1 kn n n n

When differential mesh spacing is applied 
to the derivatives

(A. 29) becomes;

I a , a +  + c  d lfP
n

kn - c A

+ g d bl A A

( e l  b l) + (l 1 e
a, a1  b d l '\

+ D Pn n + -A (A.31)

where

A = h(l +) and D 2 + 2

.
£' 
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Similarly, from (A.30);

(1 ) A n -D n A ne)B-+ f + 1f - e2) n

(aa 2 2a 2  b 2 b 2 d )n
+:n A (i + c2 A n

a2  _ b 2 2) - + '2
D +- Az--l A W )Bn-

a 2 hn b 2 d 2 -p( 2
+ DA h n A ) (A.32)

Eqs (A.31) and (A.32) can be written as

QB +Rz = sB +sz + s 3
Qn n in-i S2n-i

and (A.33)

TBn n = V1Bn-1 + V2Zn-1 + V3 respectively.

Since we kncw

Bn n-i Bn-i + zn-l zn-i + Pn-l and

z f B + i z + h

n n-i n-i In-l n-i n-i

Eqs (A.33) can be solved simultaneously for the constants

k, k, p, f, g and h.

B us - RV anC z QV -Ts
n Qu- RT n Qu - TR

I
where s and V are the right-hand sides of Eqs (A.33).
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Clearly

QV 1 - Ts 1

f n-i = U--T R

QV 2 - Ts 2  
(A.34)

g n-i Qu- TR

QV 3 - Ts 3

hn-I Qu - TR

and
us - PAV

kn_ I 7u - TR

us 2 - RV2  
(A.35)

kn-i Qu- TR

us 3 - RV 3

Pn-l Qu-TR

Two equations arc solved 
for the radiation bcjndary 

condi-

tion. They are derived as was 
Eq (7.23) but they involve

both z I and B1 .

h h+ -- 1 
-

1 b ikc oS + C +  ikcos; S B 1

\ 2 - 1 2P/ h B h nc

' l l nc2ikcosOz - bl2ikcosOB

+ 2ikcosBinc 
(A.36)

-263

63



and

fl  h l1 h,

+ d 2ikcosO - e1 
2)B

+ hI b2ikcsO + 2 c2 + ikcos z1

/ H+ h h
-+-1dikos~3inc 1 inc

h 1  2 2 2y 2b 2 2ikcosez

+ 2ikcos0z nc' (A.37)

where

h is the first mesh interval

H1 is part of z (i.e. z = flBi + glzl + H1 )

Eqs (A.36) and (A.37) can be written as

WI1BI1 + Xl1Zl Y1

W2B + xz Y
W2B1 + 2 1 2

Since all the constants are known z and B are obtained

simultaneously.

k from E"
_ z

It is possible to derive the wave number and wavelength

in the plasma from the socond-order equation. The equation

for Ez in the warm plasma is;
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Ell + $+ iBk 2 2E' + (i k S k2EZz (c + ctiks 2 ) z z

s6B' + (k2 S - iks) B (A. 23)
(c + aiks

2)

for small a ignoring all terms except for Ez Eq (A.23)

becomes a simple differential equation with an oscillating

part determined by the coefficient of Ez, which is:

ki(' vL/w) _ s2) (A. 38)
yT/mc

2

for v L/ small and neglecting s2 in Eq (A.38) the wave

number of the oscillating function is the square root of

the right-hand side.

(z) -- kV'( ) / / --T to
k z  k /UT(T / yT/mc (A. 39)

2 7
The wavelength -- is clearly determined also.

Ponderomotive Force (F NL) (Ref 4:257-58)

Beginning with the electron equation of motion:

~dV

m -- = - e[E(r) + VxB(r)] (A.40)

assuming an electric field of the form

E = Es (r)coswt
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neglectinq VxB of Eq (A.40)

mdV1 /dt - eE(r 0)

V - (e/mw)E ssinwt = dr 1 /dt (A.41)

and integrating over time:

6r = (e/mw2 )Escoswt (A.42)

Since r0 ir the initial position of the particle.

Expanding E(r) about r0 one obtains;

E(r) = E(r 0 ) + (6r 1 V)E +r=r0

from Maxwell's equation, B 1 can be found as

VxE = - dB/dt

= VxE 1 siI
B 1  V sinwt (A.43)1 W Slr=r 0

now the second-order part of Eq (A.40) is

mdV2 /dt - el(6r I  V)E + VIXBI (A.44)

3Substituting (A.41), (A.42), and (A.43) into (A.44) gives

after time averaging

mdV2\ _ e2 1

Tf t/ - 2-[(Es V)E5 + E x(,7xE5) H FNM ' 2 [ (E ) s = FNL
mW

(A.45)

66

-St



rcducing by ::pandan~ the doubit. ,ros: t ;iv2s:

FN 4 2  ;E 2 (A. 4 6)

which is the force on a single electron. The force density

is found by multiplying (A.46) by n0. In terms of p this

becomes:

2

F p (A.47)
NL 2 16MA4

since z2!" 2  z/L in our plasma:

1 z .2
F - 16 - . (A. 48)NL TTn L ~s

I
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Appendix B: Cold Plasma Data Curves

This appendix contains quantities of interest as a

function of position in a cold plasma for a power of 120

2watts/cm Power scaling relationships are given in the

body of the paper. The curves are grouped according to the

collision frequency used. Each group contains:

E (E longitudinal) in e.s.u.

(E transverse) in e.s.u.

1 the hot electron number density (cm-3)

F NI. the Ponderomotive force per cubic centimeter

V transverse the velocity of the hot electrons due to

E in cm/sec

Vlongitudinal the velocity of the hot electrons due to

Ez in cm/sec

B the magnetic field in Gauss

Note that Vos used in the paper is the square root of the

sum of the squares of Vtransverse and Vlongitudinal* Since

each group of figures is the same save the value of v/w,

collective figure titles will be given and the figures sim-

ply numbered. The following are the titles:

Figures B-1 - B-7; Data for v/w =.002

Figures B-8 - B-14; Data for v/w = .008

Figures B-15 - B-21; Data for v/co .02

Please note that the legend of each figure contains addi-

tional information.
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Appendix C: Warm Plasma Data Curves

This appendix contains quantities of interest as a

function of position in a warm plasma at a power of 120

2W/cm 2 . Power scaling relationships are given in the body

of the report. The curves are grouped according to the

electron temperature and Landau damping coefficient (L.D.C.

or v /w) used. Each group contains:
L

Ez (E longitudinal) in e.s.u.

Ex (E transverse) in e.s.u.

NIN 0 or NI/N the ratio of the hot electron number

density to the initial number density or to the

value of N at the critical surface (1.12 x 1019)

FNL the Ponderomotive force per cubic centimeter

Vtransverse the velocity of the hot electrons in the

x-direction cm/sec

Vlongitudinal the velocity of the hot electrons in the

z-direction cm/sec

B the magnetic field in Gauss

Note that Vos used in the report is the square root of the

sum of the squares of Vtransverse and Vlongitudinal* Since

each set of figures is the same except for the value of VL/W

and the temperature, collective figure titles will be given

and the figures simply numbered. The following are the

titles:

90
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. . . . .. - -. 0.. .. 5

Figures C-] - C-7; Data for vL/w = .1 and T/mc = .0005

Figures C-8 - C-14; Data for vL/w .-9 and T/mc2 = .00125

Figures C-15 - C-21; Data for vL/w = .1 and T/mc 2 = .005

Figures C-22 - C-28; Data for vL/W .1 and T/mc2 = .05

2=
Figures C-29 - C-35; Data for vL/w = .67 and T/mc = .00125

2
Figures C-36 - C-42; Data for vL/w = .67 and T/mc = .005

2
Figures C-43 - C-49; Data for vL/W = .67 and T/mc = .01

2
Figures C-50 - C-56; Data for vL/w =.67 and T/mc .

Please note that the legend of each figure contains addi-

tional information.
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